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Abstract

We consider the dynamics of a typical airfoil section both in forced and free oscillations and investigate the

importance of the added mass terms, i.e. the second derivatives in time of the pitch angle and plunge displacement. The

structural behaviour is modelled by linear springs in pitch and plunge and the aerodynamic loading represented by our

interpretation of the state-space version of the Leishman–Beddoes semi-empirical model. The added mass terms are

often neglected since this leads to an explicit system of ODEs amenable for solution using standard ODE solvers. We

analyse the effect of neglecting the added mass terms in forced oscillations about a set of mean angles of incidence by

comparing the solutions obtained with the explicit and implicit systems of ODEs and conclude that their differences

amount to a time lag that increases at a constant rate with increases of the reduced frequency. To determine the effect of

the added mass terms in free oscillations, we introduce a spring offset angle to obtain static equilibrium positions at

various degrees of incidence. We analyse the stability of the explicit and implicit aeroelastic systems about those

positions and compare the locations of the respective flutter points calculated as Hopf bifurcation points. For low

values of the spring offset angle, added mass effects are significant for low values of the mass ratio, or the ratio of

natural frequencies, of the aeroelastic system. For high values of the spring offset angle, corresponding to stall flutter,

we observe that their effect is greater for large values of the mass ratio.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

The coupling of the structural and aerodynamic terms to form the equations of motion of an aeroelastic system, such

as a typical airfoil section, results in the appearance of acceleration terms, i.e. second derivatives in time of the pitch

angle and plunge displacement, which we will refer to as added mass terms. Such notation is unconventional when

compared with its customary use in the literature (Blevins, 2001), but their effects are of a similar nature to those of the

‘‘true’’ added mass and, even though referring to them as ‘‘added mass type terms’’ could be more appropriate, we will
e front matter & 2010 Elsevier Ltd. All rights reserved.
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Nomenclature

a speed of sound

ah distance between mid-chord and aerofoil

elastic axis in semi-chords

b length of semi-chord, b¼ 1
2

c

c chord length

CC chord force coefficient

CD drag coefficient

CL lift coefficient

CM pitching moment coefficient about the elastic

axis

CN normal force coefficient

CN1
critical normal force coefficient

f position of trailing edge separation as a

fraction of chord length

f right-hand side of the aeroelastic system

h vertical displacement (plunge)

J Jacobian matrix of the system, J¼ @f=@x
k reduced frequency, k¼oc=2V

M free-stream Mach number

q nondimensional effective pitch rate, q¼ _ac=V

r distance between the elastic axis and the

calculation point in semi-chords

ry aerofoil radius of gyration

Re free-stream Reynolds number referred to the

chord length

S nondimensional time, S¼ tðV=bÞ

t time

(u,v) components of the velocity in the chord-wise

frame of reference

U� non-dimensional airspeed, U� ¼ ð2V=coyÞ

V free-stream velocity

xy distance between aerofoil elastic axis and

centre of mass

x vector of state variables of the aeroelastic

system x0 ¼ fðx; x0Þ

Greek symbols

a effective angle of incidence

a1 static stall angle of incidence

zx nondimensional damping coefficient in plunge

zy nondimensional damping coefficient in pitch

y geometric angle of incidence (pitch)

y0 spring offset angle

m aerofoil to air mass ratio, m¼m=rpb2

x nondimensional plunge displacement, x¼ h=b

r density of air

o forced oscillation frequency in pitch

ox aerofoil plunge motion natural frequency

oy aerofoil pitch motion natural frequency

o ratio of natural frequencies, o ¼ox=oa

Subscripts

f values corresponding to the full system

s values corresponding to the simplified system

x refers to plunge motion

y refers to pitch motion
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retain this terminology throughout the paper. These terms are often neglected in practice since this yields an explicit

system of ODEs which is easier to solve with standard ODE solvers. Otherwise, an implicit system of ODEs must be

solved which requires more sophisticated, and computationally more expensive, solvers.

The main aim of the paper is to investigate the effect of neglecting the added mass terms in aeroelastic systems. To

simplify the analysis, we have chosen one of the simplest aeroelastic systems: the typical aerofoil section with pitch and

plunge degrees of freedom. The aerodynamic loading on the aerofoil is represented by a semi-empirical model of

dynamic stall based on the methods proposed by Leishman and Beddoes, both in indicial and state-space forms, in a

series of papers by Beddoes (1976, 1983, 1984), Leishman and Beddoes (1986, 1989), Leishman and Nguyen (1988) and

Crouse and Leishman (1992). Our version of the state-space model is described by Galvanetto et al. (2008) and in more

detail by Chantharasenawong (2007). In the following, it will be referred to as the LB model. The structural model is

deliberately chosen to be linear so as to ensure that the nonlinear behaviour is exclusively due to the aerodynamic

loading.

The majority of analyses of stall-induced vibrations are carried out by time integration of the ODEs representing the

aeroelastic system with a variety of semi-empirical dynamic stall models such as the ONERA1 (Sarkar and Bijl, 2008;

Mahajan et al., 1993), Gormont (Li and Fleeter, 2003), Leishman–Beddoes (Price and Fragiskatos, 2000; Galvanetto

et al., 2007) or Gangwani (Price and Keleris, 1996) models to name but a few. However, such an approach is

computationally unaffordable for the purposes of this study. On the other hand, similar investigations of stall flutter

using the ONERA model (Tran and Petot, 1981) have been carried out by Dat and Tran (1983) through an analysis of

the stability of small amplitude oscillations, by Tang and Dowell (1996) using an eigenvalue analysis and by Beedy et al.
1References to the ONERA model in this paper correspond, more specifically, to the ONERA EDLIN version of the model.
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(2003) via the harmonic balance method. A common feature of these methods is that the aerodynamic influence of the

motion of the aerofoil in pitch and plunge is accounted for by replacing the geometric angle of incidence y by

yþ ð1=V Þðdh=dtÞ, where h is the plunge displacement and V is the free-stream velocity. The implicit assumptions are

that the angular variations due to the plunge motion are small and that the first and second temporal derivatives of y
can be neglected.

The aim of this work is to investigate the validity of such simplifications, i.e., neglecting the added mass terms, using

the evaluation of flutter boundaries as a representative aeroelastic problem. Flutter boundaries are characterized for the

purposes of this investigation as loci of Hopf bifurcations in the parameter space where there is a transition from a fixed

point to a limit cycle oscillation. This reduces to an eigenvalue analysis of the governing equations of the dynamical

system linearized about an equilibrium configuration. To explore the stability of the system from linear to stall flutter,

we incorporate a spring offset angle,2 as proposed by Tang and Dowell (1996), that will permit us to find equilibrium, or

fixed, points of the aeroelastic system for a wide range of incidences. This analysis will also be used to assess and

illustrate some of the difficulties associated to the analysis of piecewise smooth dynamical systems.

The rest of the article is organized as follows. Section 2 presents the equations of motion of the aeroelastic system

with emphasis on the calculation of the effective angle of incidence and the pitch rate as they determine the aerodynamic

forces and moments on the aerofoil section. It also discusses the simplifications to the model that result from neglecting

the acceleration terms in pitch and plunge. These terms, which we refer to as added mass terms, are often neglected in

the literature without any assessment of the errors introduced. Here we analyse these errors by comparing the

aeroelastic behaviour of the typical aerofoil section obtained when the aerodynamic forces represented by the LB model

include the added mass terms and when they are neglected. Section 3 presents first the verification of our version of the

LB model against published experimental and computational data with a view to assess its ability to matched them, and

to evaluate the magnitude of the matching errors. The discussion of the errors associated with neglecting the added

mass terms is carried out in Section 4 for forced harmonic oscillations. Section 5 analyses the effect of the added mass

terms for free oscillations of the aeroelastic system by identifying, using a linear stability analysis, the Hopf bifurcation

points over a range of equilibrium angles of incidence. The conclusions of this study are given in Section 6.
2. Governing equations of the motion of the typical aerofoil section

The aeroelastic model discussed here is a typical aerofoil section with two degrees of freedom. The aerofoil can move

in the vertical direction (plunge) and rotate in the plane (pitch), as shown in Fig. 1. The mechanical model consists of

bending and torsional springs that are attached to the aerofoil model at the elastic axis, together with the relevant

dampers. Only aerodynamic nonlinearities will be investigated here and therefore the structural response is assumed to

be linear. In any event, the methods of analysis described here could be easily adapted to incorporate non-linear

structural behaviour (Lee et al., 1999).

The section used is a NACA0012 aerofoil in a horizontal flow of undisturbed speed V, as shown in Fig. 1. The plunge

deflection of the elastic axis is denoted by h, taken to be positive in the downward direction, and y is the geometric angle

of incidence about the elastic axis. This is the angle between the flow direction and the chord line and it is taken to be

positive nose-up (clockwise according to Fig. 1). The chord length is denoted by c and the semi-chord by b¼ 1
2

c. The

elastic axis is located at a distance ahb from the mid-chord position, while the mass centre is located at a distance xyb

from the elastic axis. Both distances are positive when measured toward the trailing edge of the aerofoil.

The coupled bending-torsion equations of motion for the aerofoil have been derived in many textbooks, for example

Fung (1993), and can be written in nondimensional form, see for instance Lee et al. (1999), as

x00 þ xyy00 þ 2zx
o

U�
x0 þ

o
U�

� �2

x¼�
1

pm
CLðSÞ; ð1Þ

xy

r2y
x00 þ y00 þ 2

zy
U�

y0 þ
y

U�
2 ¼
ð0:5þ ahÞ

mpr2y
½CLðSÞcosyþ CDðSÞsiny� þ

2

pmr2y
CM ðSÞ; ð2Þ

where y is the angle of incidence and x¼ 2h=c is the nondimensional plunge displacement. The lift and drag coefficients

of the aerofoil are denoted by CL and CD, respectively, and CM represents the pitching moment coefficient about the

elastic axis. The prime denotes differentiation with respect to the nondimensional time S¼ tð2V=cÞ. Other parameters

in the equations of motion are: the ratio of natural frequencies, o ¼ox=oy, the plunge (bending) natural frequency, ox,
2Tang and Dowell refer to it as initial pitch, but we feel that the term spring offset angle describes it more accurately.
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Fig. 1. Notation for a typical aerofoil section with two degrees of freedom: pitch, y, and plunge, h.
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the pitch natural frequency, oy, the nondimensional damping coefficients in plunge and pitch, zx and zy, respectively,
the non-dimensional airspeed, U� ¼ 2V=coy, the aerofoil to air mass ratio, m¼m=rpb2, the aerofoil radius of gyration,

ry, and the distance from elastic axis to centre of mass, xy.

The aerodynamic coefficients Ci; i=L,D,M are calculated using our interpretation of the state-space form of the LB

semi-empirical dynamic stall model (Galvanetto et al., 2008; Chantharasenawong, 2007). The aerodynamic loading is

given as a function of a vector of 12 components, the state variables of the system, denoted by xa=[x1,y,x12]
T. This

vector is the solution of the system of ODEs

xa
0 ¼ faðxa;aðxaÞ;qðxaÞÞ; ð3Þ

where the symbols a and q denote the effective angle of incidence and pitch rate, respectively, and the aerodynamic

coefficients are given by expressions of the form

Ci ¼Ciðxa;aðxaÞ;qðxaÞÞ; i¼ L;D;M: ð4Þ

The equations of motion (1) and (2) can be written as a system of four first-order ODEs by assigning the pitch angle

and plunge displacement and velocities to the vector of state variables

xe ¼ ½x13;x14;x15;x16�
T ¼ ½y;y0;x;x0�T: ð5Þ

The resulting system will be written in abridged form as

xe
0 ¼ feðxe;CL;CD;CM Þ: ð6Þ

The structural and aerodynamic models can be combined to create a system of first-order ODEs which describe the

aerofoil motion and is given by

x0 ¼
xa
0

xe
0

( )
¼

fa

fe

( )
¼ fðxÞ ¼ fðx;aðxÞ;qðxÞÞ; ð7Þ

where x=[x1,x2,y,x16]
T.

The aeroelastic model requires the calculation of the effective angle of incidence, a, and the effective pitch rate, q.

Using the notation of Fig. 2, in particular the velocity triangle in Fig. 2(c), the effective angle of incidence, in a frame of

reference that moves with the aerofoil, is given by

a¼ tan�1
v

u

� �
¼ tan�1

Vsinyþ _hcosyþ _yrb

Vcosy� _hsiny

 !
; ð8Þ

where the overdot represents differentiation with respect to time, u and v are the components of the velocity in the

chord-wise frame of reference, as depicted in Fig. 2(b), and rb is the distance between the elastic axis and the calculation

point. Notice that, if we take r=0 and assume that y is small, we recover a¼ yþ _h=V , which is the formula used in

other analyses, e.g. Leishman (2006), Sarkar and Bijl (2008), Mahajan et al. (1993), and Price and Fragiskatos (2000).
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Fig. 2. A schematic of the typical aerofoil section and the velocity components in (a) the flow direction and (b) the chord-wise frame of

reference. The resultant velocity triangle at the calculation point in the chord-wise frame of reference fixed to the aerofoil is shown

in subfigure (c).
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The nondimensional form of the effective angle of incidence is given by

a¼ tan�1
sinyþ x0cosyþ y0r

cosy�x0siny

� �
: ð9Þ

Note that for a pure pitch motion at the elastic axis, i.e. x0 ¼ 0 and r=0, the effective angle of incidence is reduced

to a¼ y.
The nondimensional pitch rate, denoted by qf, is given by

qf ¼ _a
c

V
¼ a0

V

b

� �
c

V
¼ 2a0 ¼ 2

LU 0�UL0

U2 þ L2
ð10Þ

with

U ¼ sinyþ x0cosyþ y0r; L¼ cosy�x0siny; ð11; 12Þ

U 0 ¼ y0cosy�x0y0sinyþ x00cosyþ y00r; L0 ¼ �y0siny�x0y0cosy�x00siny: ð13; 14Þ

2.1. Simplifications obtained by neglecting the added mass terms

The effective pitch rate qf contains the terms y00 and x00 that we refer to as added mass terms in analogy with the

classical analysis of fluid-induced accelerations. The inclusion of the effective pitch rate in the aeroelastic system ODEs

through the LB model, results in the presence of these terms in the right-hand side of the equations leading to a system

of the form

x0 ¼ ff ðx;x
0Þ; ð15Þ
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where ff represents the right-hand side of Eq. (7) with q=qf. This equation is an implicit system of ODEs, which will be

referred to as the full system.

The definition of effective pitch rate could be simplified by neglecting the added mass terms y00 and x00 from the

effective pitch rate, as defined in Eqs. (13) and (14), to obtain

â0 ¼
LÛ 0�UL̂0

U2 þ L2
; ð16Þ

where U and L are given by (11) and (12), respectively, and their derivatives (without the added mass terms) are

Û 0 ¼ y0cosy�x0y0siny; ð17Þ

L̂0 ¼ �y0siny�x0y0cosy: ð18Þ

Note that if the effective angle of incidence is evaluated at the elastic axis, i.e. r=0, this expression conveniently reduces

to â0 ¼ y0. The simplified effective pitch rate qs is now given by

qs ¼ 2â0 ¼ 2y0
1þ ðx0Þ2 þ y0rðsinyþ x0cosyÞ

1þ ðx0Þ2 þ 2y0rðsinyþ x0cosyÞ þ ðy0rÞ2
; ð19Þ

so the system of ODEs becomes

x0 ¼ fsðxÞ; ð20Þ

where fs is given by the right-hand side of Eq. (7) with q=qs. This will be referred to as the simplified system.

In this paper we compare the solutions of the implicit or full system (15) and those of the explicit or simplified system (20) to

elucidate the effect of neglecting the added mass terms on the aeroelastic behaviour of aerofoil section. To study these effects we

compare the solutions of both systems under forced and free oscillations and determine the range of parameters where the

neglect of the added mass terms leads to the largest differences in behaviour. However, first we discuss the verification of our

version of the LB model with a view to assess how well it reproduces available computational and experimental data.
3. Verification of the LB model

We use the LB model to predict the aerodynamic coefficients of normal force, CN ¼CLcosyþ CDsiny, and

pitching moment, CM, for an aerofoil harmonically oscillating in pitch with a reduced frequency k=0.10. We consider

two test cases with moderate and deep stall selected from the experimental data published by McCroskey

(McCroskey et al., 1976; McAlister et al., 1983). The oscillatory motion in the moderate stall case is described by the

equation aðSÞ ¼ 10þ 10sinðkSÞ and for the deep stall case we have aðSÞ ¼ 15þ 10sinðkSÞ, where S is the non-

dimensional time and a is given in degrees. The free-stream conditions correspond to a Reynolds number Re¼ 3� 106

and a Mach number M=0.3. The static curves representing the variation of the aerodynamic coefficients with the angle

of incidence were taken from the experimental data presented by McAlister et al. (1983). The numerical results from our

implementation of the LB model3 are compared to the experimental data by McCroskey et al. (1976) and the numerical

data from the original work by Leishman and Beddoes (1989).

The magnitude of the difference between the curves representing the computed and experimental time evolution of

the aerodynamic coefficients will be measured by

DCi ¼
dCi

Cimax
�Cimin

; i¼L;N ;M; ð21Þ

where dCi is the root-mean-square, evaluated over one cycle, of the difference between the values calculated using our

version of the LB model and the experimental data, and Cimax
and Cimin

are the maximum and minimum values,

respectively, of the experimental aerodynamic coefficients during the cycle.

Fig. 3 presents that comparison for the moderate stall case. It shows that our implementation of the LB model

produces results that are very close to the original version. Both versions of the LB model reproduce reasonably

well the overall shape and magnitude of the experimental values of CN and CM except for the reattachment region

where the largest errors occur. For this case, the magnitude of the errors calculated using Eq. (21) are DCN ¼ 6:4%
and DCM ¼ 4:6%.
3For fairness of comparison with the results of Leishman and Beddoes (1989), the simplified system in our version of the LB model

is used.
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Fig. 4 shows the comparison in the deep stall case. This is a tougher test for the LB model since the increase of

the mean angle of incidence by five degrees means that the aerofoil oscillates in and out of stall during the cycle. This

case activates all components of the model and constitutes a good test of its ability to model such complex flow. Here

the magnitude of the errors calculated using Eq. (21) are DCN ¼ 10:2% and DCM ¼ 8:4%. These errors are significantly
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larger than those observed in the case of moderate stall and the largest ones occur again in the reattachment region.

This is not surprising since this is the phase of the cycle that is the most difficult to model (Leishman, 2006).

The computed results show that our interpretation of the LB model produces similar values of the aerodynamic

coefficients to the original model. In both implementations, the maximum normal force and minimum moment have

been found to occur precisely at the same time, which is consistent with the experimental results. The agreement

between the LB model and the experimental coefficients is very good, with root-mean square (r.m.s) errors below

approximately 10%. The larger discrepancy between computation and experiment is observed during the reattachment

period, but this is also present in the original numerical results reported by Leishman and Beddoes (1989).
4. Added mass effects in forced oscillations

We examine the effects that neglecting the added mass terms in the expressions of the effective angle of incidence and

pitch rate has on the aerodynamic coefficients of the aerofoil section under forced oscillations in plunge. We consider an

aerofoil, at an angle of incidence y, which oscillates in plunge only with a vertical displacement given by x¼ sinðkSÞ,

where k denotes the reduced frequency. Simulations using the full and simplified systems were performed over a range

of reduced frequencies 0:05 � k � 0:20 and angles of incidence 0� � y � 20�.

The LB model computes the aerodynamic forces at the aerodynamic centre of the aerofoil, hence it requires the

effective pitch rate and angle of incidence evaluated there. The aerodynamic centre of the NACA0012 aerofoil is located

at the quarter-chord, i.e. r=ahþ0.5. In the following we have taken ah=�0.5 so that r=0 and the elastic and

aerodynamic centres coincide. This eliminates the acceleration terms from the effective pitch rate when the aerofoil

moves in pitch only. It is also a convenient choice since it will later simplify the calculation of static equilibrium points,

namely Eq. (22).

The differences observed between the aerodynamic coefficients CL and CM calculated using the full and simplified

systems, for an incidence y¼ 10� and a set of frequencies k=0.05, 0.15, 0.20, are shown in Figs. 5, 6 and 7, respectively.

This is the typical range of frequencies encountered in helicopter blades (Leishman, 2006).

The results obtained for a reduced frequency k=0.05, depicted in Fig. 5, show very small differences in the

aerodynamic coefficients due to the added mass terms. However, at the higher reduced frequencies k=0.15 and 0.20,

shown in Figs. 6 and 7, respectively, the differences become significant. Interestingly, the most significant effect seems to

be the presence of a time lag which can be observed in the time evolution of the aerodynamic coefficients.
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The trend in these figures shows that the differences become larger as the reduced frequency increases. This agrees

with the findings presented by Hansen et al. (2004). It is also reasonable to expect that an increase in the oscillation

frequency would lead to larger values of x00 in Eqs. (13) and (14) and therefore the added mass terms will be more

significant.

Fig. 8 shows the evolution of the aerodynamic coefficients CL and CM for a reduced frequency k=0.10 and a set of

angles of incidence y¼ 5�; 15�; 20�. The differences observed here between the full and simplified systems are small.

The magnitude of the difference between the curves representing the time evolution of the aerodynamic coefficients

calculated using the full and simplified systems will be measured using Eq. (21) with Cimax
and Cimin

; i=L,M taken to be

the maximum and minimum values, respectively, of the aerodynamic coefficients during the cycle for the full system.

The calculated values of DCL and DCM for the selected range of reduced frequencies and angles of incidence are

shown in Fig. 9. These plots show that errors generated by neglecting the added mass terms increase with the reduced

frequency at an approximately constant rate. They also show that the maximum differences are obtained for y¼ 10�.

This can be explained by the presence of cycles of flow separation and reattachment in the range 10� � y � 15� which

are not present elsewhere.

We therefore conclude that in the range of frequencies considered here (0:05 � k � 0:2), disregarding the added mass

terms in forced oscillations leads mostly to phase errors that increase linearly with the reduced frequency, but these

errors are of the same order of magnitude as the errors observed when comparing the computational results of the LB

model with the experimental data in Section 3. However, it should be noted that the choice of r=0 here eliminates some

of the added mass terms so we would expect the effect of neglecting the added mass terms to be larger in cases with more

complex kinematics, for instance when ra0 and when the flows are highly unsteady (k40:2).
5. Added mass effects in free oscillations

Here we use a linear stability analysis to determine the range of parameters of the aeroelastic system where neglecting

added mass effects leads to significant differences in the location of the flutter boundaries. Flutter instability is the

common name used in aeroelasticity to refer to a Hopf bifurcation where there is a transition (in the phase space) from



0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

Reduced Frequency, k

Δ 
C

L

Mean α = 0 deg.
Mean α = 5 deg.
Mean α = 10 deg.
Mean α = 15 deg.
Mean α = 20 deg.

0.05 0.1 0.15 0.2
0

0.05

0.1

Reduced Frequency, k

Δ 
C

M

Fig. 9. Plots of DCL and DCM for a range of reduced frequencies 0:05 � k � 0:20 and a range of mean angles of incidence

0� � y � 20�.
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a fixed point to a limit cycle oscillation. The value of the parameter for which the bifurcation occurs is called a

bifurcation point (in parameter space) or critical value.

In the aeroelastic system, a fixed point represents a position of the airfoil where the aerodynamic lift and pitching

moment are in equilibrium with the restoring forces exerted by the springs. The fixed point is the solution of a static

equilibrium problem. Under a static condition, the LB model simplifies to Kirchhoff’s theory, as described for instance

by Leishman (2006), which involves only the incidence angle y.
To allow the fixed point to move through different regions of the aeroelastic system separated by the discontinuity

boundaries of the LB model (see Fig. 11), we follow the approach proposed by Tang and Dowell (1996) and introduce a

new parameter, the spring offset angle y0. The role of this angle is to achieve static equilibrium between aerodynamic

loads and structural response over a range of angles of incidence. The static equilibrium angle of incidence y (which

corresponds to x13 in the LB model) is the solution of the uncoupled nondimensional equation of motion in rotation

given by

mpr2a
2U�2

ðy�y0Þ ¼
1
2
þ ah

� �
2

CN ðyÞ þ CM ðyÞ: ð22Þ
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This equation is obtained by considering a stationary point of Eq. (2) which has been suitably modified to incorporate a

torsional spring with zero restoring moment at angle of incidence y¼ y0. We will use ah ¼�
1
2
so the solution is the

intersection between the pitching moment curve and the spring restoring moment as illustrated in Fig. 10. The

remaining states of the fixed points can be found by substituting the solution of Eq. (22) into the uncoupled translation

equation of motion and the state-space LB model.

The equilibrium point changes its position when one of the parameters of the system is altered. Here, four parameters

will be considered: y0, M, o and m. Given that x0 ¼ 0, the fixed points of the full and simplified aeroelastic systems

coincide since ff ðx; 0Þ ¼ fsðxÞ ¼ 0.

Discontinuities exist in the phase space of the aeroelastic system because of the piecewise definition of the LB model at

x9 ¼7CN1 and x13 ¼7a1. Here CN 1 denotes a critical value of CN above which, if x9 is increasing, a vortex is shed from

the leading edge, and a1 corresponds to the aerofoil static stall angle of incidence. The LB model uses x9 ¼7CN1 as a

switch to indicate the shedding of the leading edge vortex which affects the values of time parameters in the state-space LB

model ODEs. Hence, x9 ¼7CN1 represents a discontinuity boundary in the phase space of the aeroelastic system.

The dynamic trailing edge separation point x10 is a nonsmooth function of x13 and a1. The discontinuity is located at

x10=0.70 which corresponds to x13 ¼ a1. However, a1 is a variable parameter whose value depends on the flow

condition around the airfoil. It is therefore convenient to make a1 a constant for a given Mach number so that the

discontinuity described by x13 ¼ a1 can be drawn as a line in Fig. 11.

There are several other discontinuities in the LB model which affect the dynamics of the system, but they can safely

be ignored when the fixed point is not close to the discontinuity since only small perturbations about the fixed points are

of interest here. A complete description of the discontinuities in this implementation of the LB model is given by

Chantharasenawong (2007).

Fig. 11 shows the regions in the y02M and o2m planes delimited by the x9=CN 1 and x13 ¼ a1 discontinuities. In

Fig. 11(a) the out-of-plane parameters are fixed at o ¼ 0:80 and m¼ 100, while y0 ¼ 10� and M=0.30 in Fig. 11(b). The

two planes represent the four-dimensional parameter space with the crosses indicating the only point common to both

planes. The discontinuities partition the area shown in the figure into three separate regions which are characterised by:
(i)
 Region 1: x9oCN1 and x13oa1. This is the linear flutter region where no discontinuity associated with dynamic

stall has been triggered.
(ii)
 Region 2: x94CN1 and x13oa1. In this intermediate stall region, the leading edge vortex has started but the

geometric angle of incidence is still below the static stall angle.
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(iii)
 Region 3: x94CN1 and x134a1. This is the stall flutter region where all dynamic stall discontinuities are activated.

It is sometimes referred to as the deep stall region.
Fig. 11 shows that varying the parameters of the system ðy0;M;o; mÞ, the fixed point can move through several regions

where the Jacobian matrices of the right-hand side terms of the systems (15) and (20) are defined differently. The

investigation that follows will choose three points (one in each region) in the parameter space away from the

discontinuities to study the effect of neglecting the added mass terms.

The method used to generate Fig. 11(a) is the following. We fix two of the parameters, namely o ¼ 0:80 and m¼ 100,

and vary the spring offset angle y0 between 0 and 15 and the Mach number M between 0.3 and 0.5. The value of M for

which x9=CN 1, where x9 is the coordinate of the fixed point, is marked by a circle. Similarly, a triangle represents the

condition x13 ¼ a1. The same method has been applied to produce Fig. 11(b) where M and y0 are fixed instead.

To determine the behaviour of the system in each of the three regions, the calculation of the Hopf bifurcation point at

three different locations in the parameter space will be examined in Section 5.3. The behaviour of the system at the two

discontinuity boundaries would also be of interest. However, a bifurcation along such boundaries is not generic. Here

we will deal only with the generic cases and leave the non-generic ones for future research.



J. Peiró et al. / Journal of Fluids and Structures 26 (2010) 814–840 827
5.1. Calculation of the Hopf bifurcation points

The Hopf bifurcation is a bifurcation in which a stable fixed point of a dynamical system loses its stability as a

conjugate pair of eigenvalues of the linearised system crosses the imaginary axis of the complex plane. The stability of

the linear system relates to the stability of the nonlinear system (Guckenheimer and Holmes, 2002). An infinitesimal

amplitude limit cycle oscillation motion is expected to be created at the Hopf bifurcation as the stable fixed point

changes its stability.

The linear stability of a fixed point of the full aeroelastic system (15), away from discontinuities in this right-hand side

term, can be analysed by introducing a perturbation vector dx to the state variables representing a generic point x of the

aeroelastic system leading to the system of ODEs

x0 þ dx0 ¼ ff ðxþ dx;x0 þ dx0Þ:

The right-hand side can be expanded in a truncated Taylor series to read

x0 þ dx0 ¼ ff ðx;x
0Þ þ

@ff

@x

����
ðx;x0 Þ

dxþ
@ff

@x0

����
ðx;x0 Þ

dx0

and, given that Eq. (15) is satisfied, the expression is simplified to the evolution equation of the small perturbations to

the system at ðx; x0Þ

dx0 ¼ I�
@ff

@x0

����
ðx;x0Þ

 !�1
@ff

@x

����
ðx;x0Þ

2
4

3
5dx¼ Jf dx;

where Jf denotes the Jacobian matrix of the full aeroelastic system (15). Its eigenvalues lf will determine the stability of

the full aeroelastic system. For a fixed point we will have x0 ¼ 0 and, if it is a Hopf bifurcation, a conjugate pair of

eigenvalues will simultaneously cross the imaginary axis, i.e. there will be two eigenvalues of the form lf1;2 ¼7Wi, where
W is a real number and i¼

ffiffiffiffiffiffiffi
�1
p

.
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Fig. 12. Flutter boundary for o as a function of the spring offset angle y0: comparison of the values obtained with the implicit and

explicit systems based on the LB model and those reported by Tang and Dowell (1996) using the ONERA model.
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The simplified system that results from neglecting the added mass terms is given by Eq. (20) and a similar derivation

leads to an evolution equation for small perturbations of the form

dx0 ¼ Jsdx¼
@fs

@x

����
x

dx;

where Js denotes the Jacobian matrix of the simplified aeroelastic system (20) and its eigenvalues again determine the

stability of the system.
5.2. Comparison with the ONERA model

The methodology described in the previous section can be applied to the calculation of flutter boundaries as the loci

of the Hopf bifurcation points of the system. In the absence of suitable experimental data to validate our approach, we

compare the calculation of the flutter boundary for o (or alternatively the reduced velocity) as a function of the spring

offset angle y0 with the results obtained by Tang and Dowell (1996) using the ONERA model.
Fig. 13. (a) Plots of Hopf bifurcation curves in region 1 and the discontinuity boundaries in the o2m plane (M=0.3, y0 ¼ 10�).

Figures (b)–(d) show plots of the maximum real parts of the eigenvalues in the range 5 � m � 50 at o ¼ 0:45; 0:55 and 0.65,

respectively.
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The aerodynamic and structural characteristics of the aerofoil section have been chosen so that the flutter values for

y0 ¼ 0 of both dynamic stall models coincide. The values obtained with the implicit and explicit systems based on the

LB model are compared with those obtained using the ONERA model in Fig. 12.

The LB model consistently predicts, over the range of y0 considered here, a flutter value of o lower than that

obtained with the ONERA model. Both methods show a reduction of the flutter value of o as the spring offset angle

increases for values of y0o15�. For values of y0 above this value, the two models behave in opposite ways with the LB

model predicting an increase of the critical value of o with y0. This is not surprising since the modelling of stall

behaviour is very different in both models.

The flutter boundary curve obtained with the ONERA model is a continuous function of y0. The curve calculated

using the LB model presents a discontinuity of slope at y0 � 15�. This is a consequence of the piecewise smooth

definition of the LB model which has been shown to affect significantly the dynamical behaviour of the aeroelastic

system in Galvanetto et al. (2008).

Focusing on the prediction by the LB model only, it can be seen that the discrepancies due to the added mass terms

are larger as y0 increases towards the deep stall region. This will be analysed in more detail in the next section.

This comparison cannot be considered a validation of the evaluation of flutter boundaries by the LB model, but it

shows that the use of the LB model results in similar trends and orders of magnitude of the critical values to those

calculated with the well-established ONERA dynamic stall model. It also highlights that dynamic stall models, even if

their parameters have been optimized for a particular aerofoil, could produce results that differ significantly. More

importantly, the magnitude of the differences is considerably larger than the errors observed in predicting the

experimental values of the aerodynamic coefficients of the aerofoil.

5.3. Assessment of added mass effects

The analysis of the effect of neglecting the added mass terms on the calculation of flutter boundaries will be

performed over a range of o at fixed values of Mach number and y0, i.e. in the o2m plane similar to Fig. 11(b). The

reason for not using the y02M plane is because the parameters CN 1 and a1 are functions of the Mach number, and this

can make the presentation of these results in that plane confusing.
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Recall that the aeroelastic system is partitioned by the discontinuity boundaries into three separate regions as

illustrated in Fig. 11. The analysis here will involve finding the Hopf bifurcation in these regions. Three cases will be

considered:
(1)
Fig.

Figu

resp
Hopf bifurcation in region 1 (x13oa1 and x9oCN1Þ;
(2)
 Hopf bifurcation in region 2 (x13oa1 and x94CN1Þ;
(3)
 Hopf bifurcation in region 3 (x134a1 and x94CN1Þ.
In the following analysis the symbols J1k, J
2
k and J3k, where k= f or s, will denote the Jacobian matrices of the full or

simplified aeroelastic system in regions 1–3, respectively.

5.3.1. Case 1: Hopf bifurcation in region 1

This region may be referred to as the linear region because it is associated with small values of angle of incidence and

the highly nonlinear components of the LB model are not activated. This calculation is effectively a classical flutter

analysis.
15. (a) Plots of Hopf bifurcation curves in region 2 and the discontinuity boundaries in the o2m plane (M=0.3, y0 ¼ 12�).

res (b)–(d) show plots of the maximum real parts of the eigenvalues in the range 20 � m � 80 at o ¼ 0:65; 0:75 and 0.85,

ectively.
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The Hopf bifurcation curves of the full and simplified aeroelastic systems and the discontinuity boundaries are shown

in Fig. 13(a). This o2m plane is characterised by y0 ¼ 10� and M=0.30. The Hopf bifurcation curves lie in region 1 for

0:40 � o � 1:20. Despite the small difference in numerical values, the Hopf bifurcation curves for both systems behave

similarly in the given range of o.

Figs. 13(b)–(d) show the variation in the maximum real parts of the eigenvalues at different values of o. The range of

m used in Figs. 13(b)–(d) are indicated by the corresponding boxes in Fig. 13(a). The maximum real parts shown in these

figures are shared by a pair of eigenvalues, which confirms that the Hopf bifurcation has occurred. In Figs. 13(b)–(d),

jumps are observed in the plots of eigenvalues at low values of m.
The differences between the full and simplified aeroelastic systems can be characterised by

Dm¼ jmf�msj; dm¼
Dm
mf

; ð23Þ

where mf and ms are the values of the mass ratio m at the Hopf bifurcation in the full and simplified aeroelastic system,

respectively. The differences between the Hopf bifurcation curves are presented in Figs. 14(a) and (b). The maximum

value of Dm is observed at o ¼ 0:40 and its value reaches zero at o � 0:85 which indicates the intersection of full and

simplified Hopf bifurcation curves. The maximum relative difference of dm¼ 0:40 is observed at o ¼ 0:40. This is

because dm is amplified by the small values of m even though the absolute difference Dm is not significantly large. It is the

opposite when o40:80 where dm is almost negligible.

Figs. 14(c) and (d) show the variations of x13 and x9 at the Hopf bifurcation for the same range of o. The plots show

that both variables are below their respective critical values, in agreement with the linear characteristics of region 1. The

differences between the full and simplified systems in this region are large when the values of m at the Hopf bifurcation

are low. This implies that the acceleration terms could have significant effects on aeroelastic systems operating at low

values of m or o, and their contributions should not be neglected from the modelling. This is in accordance with the

well-known result of linear aeroelastic theory for small oscillations, but even though we are considering linear

aerodynamics, i.e. the aerodynamic coefficients are proportional to a and q, these are non-linear functions of the

geometry here.
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5.3.2. Case 2: Hopf bifurcation in region 2

This region is bounded by the two discontinuity boundaries and is the smallest in area when compared to other

regions. This significantly narrows down the range of parameters y0 and M for which the Hopf bifurcation curves in the

o2m plane lie in region 2. The plots presented in this section are obtained by using y0 ¼ 12� and M=0.30.

Fig. 15 shows that the Hopf bifurcation curves lie between the two discontinuity boundaries in the o2m plane. The

value of m is small at the Hopf bifurcation at low values o, and it increases as o grows. The shape of the curves is also

similar to that observed in region 1. This can be explained by the fact that the components of the Jacobian matrices J1

and J
2 have the same expressions but with different values of the time parameters Tf and Tv (see Appendix A).

The variation of the maximum real parts of the eigenvalues at three sample values of o are shown in Figs. 15(b)–(d).

These points represent a conjugate pair of eigenvalues that have changed sign, so these figures represent the Hopf

bifurcation. The behaviour of Dm and dm shown in Figs. 16(a) and (b), respectively, is similar to that observed in region

1. The value of Dm fluctuates between 0.50 and 1.90 and its minimum occurs at o � 0:95. The relative difference dm is

amplified by the low values of m when o is small. The maximum value of dm is approximately 0.30 and it corresponds to

o ¼ 0:40. The difference between the full and simplified systems in region 2 is large when oo0:80. This behaviour is
similar to that observed in region 1 because the expressions of the Jacobian matrices J1k and J2k are the same and the only
Fig. 17. (a) Plots of Hopf bifurcation curves in region 3 in the o2m plane (M=0.3, y0 ¼ 18�). Figures (b)–(d) show plots of the

maximum real parts of the eigenvalues in the range 100 � m � 400 at o ¼ 0:77, 0.81 and 0.85, respectively.
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difference is due to some minor changes in the values of the time constants Tf and Tv. Figs. 16(c) and (d) show the

coordinates x13 and x9 of the fixed points at the Hopf bifurcation curves, and confirm that they lie in region 2.

5.3.3. Case 3: Hopf bifurcation in region 3

Region 3 may be referred to as the stall region because all non-linear components of the LB model are active here.

The fixed points in this region are characterised by x134a1 and x94CN1. These correspond to a large angle of

incidence. The results presented in this section are obtained by using y0 ¼ 18� and M=0.30.

Fig. 17(a) shows only the Hopf bifurcation curves in the parameter plane. The discontinuity boundaries are not

shown here because they are outside the range of m used in the calculations (1 � m � 5000), however, only values

0 � m � 450 are shown in the figure. Nonetheless, Figs. 18(c) and (d) provide evidence that the Hopf bifurcation curves

lie in region 3. The maximum real parts of the eigenvalues at three sampling values of o are shown in Figs. 17(b)–(d).

Unlike in regions 1 and 2, the eigenvalues of the two systems are clearly apart from each other, showing a distinct shift

in the Hopf bifurcation.

The absolute difference Dm increases with o up to o � 0:90 where it experiences a very rapid growth as shown in

Fig. 18. The relative difference dm is now at its maximum when o is large, which is opposite to the behaviour shown

in cases 1 and 2. This is due to the change in the expressions of the Jacobian matrix when the fixed point crosses the

x13 ¼ a1 discontinuity boundary. The minimum value of Dm is found at o ¼ 0:40 while that of dm is found at o ¼ 0:60.
An increase in dm toward the low values of o shown in Fig. 18(b) is due to the small values of m at the Hopf bifurcation

which act as the denominator for the relative difference.

In this region, which represents highly separated flows ðx134a1Þ, the effect of the added mass terms is significant

when the Hopf bifurcation occurs at high values of m. This is opposite to the findings in region 1, the linear region.

The Hopf bifurcation points calculated with the eigenanalysis have also been obtained through numerical integration

and shown to agree by Chantharasenawong (2007).

The Jacobian matrices of the full and simplified aeroelastic systems have the same fixed points, as both systems

reduce to the same system of algebraic equations for x0 ¼ 0, but their eigenvalues are different and, as a result,

neglecting the acceleration terms results in a shift of the Hopf bifurcation. The shift in the Hopf bifurcations in m is

illustrated by plotting the Hopf bifurcation curves in a two-parameter plane, as shown in Fig. 19. The shift is
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represented by the gap between the two Hopf bifurcation curves generated at the same Mach number. Because of the

small size of region 2, the curves often intersect with the discontinuity boundaries that border it, hence they are not

shown in this figure.
5.4. Effect of added mass terms on Dm and dm

The shift or difference in the Hopf bifurcations in m is measured by Dm and the relative difference by dm. These act as
indicators of the magnitude of the effects of the acceleration terms.

Fig. 20 shows plots for dm of the Hopf bifurcation curves in Fig. 19. With y0 ¼ 4�, Fig. 20(a) represents the behaviour

of the differences in region 1 of the aeroelastic system parameter space. The maximum dm is observed at low values of o.

This can be explained by the small values of m at the Hopf bifurcation compared to Dm. Fig. 20(b) shows a similar plot

for the system in region 3 of the parameter space. The maximum values of dm are sometimes greater than unity and are

found at large values of o instead. It means that the effects of the acceleration terms are significant at low mass ratios in
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Fig. 20. Relative differences between Hopf bifurcation curves in the range 0:35 �M � 0:45 in (a) region 1 (y0 ¼ 4�) and (b) region 3

(y0 ¼ 18�).
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the linear aerodynamic region and at high mass ratios in the stall region. In these cases, the aerodynamic system must be

described by a system of implicit ODEs and an appropriate numerical integration has to be used.
6. Conclusions

We have investigated the importance of added mass terms in the dynamics of a typical airfoil section, both in forced

and free oscillations.

In the case of forced oscillations, the results show that neglecting the added mass terms introduces a time lag or shift

in the time history of the aerodynamic coefficients that increases with the reduced frequency but has a very small effect

in their amplitude. The r.m.s. errors that this originates increase at a constant rate with increases of the reduced
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frequency. However, the errors observed in the range 0:05 � k � 0:2 are always below 15% and their magnitude is

comparable to that of the errors incurred in matching the experimental data.

In free oscillations, we investigated the effects of the added mass terms in calculating the flutter boundaries at small

(y0 ¼ 4�) and large (y0 ¼ 18�) values of the spring offset angle for the range of frequencies ratio 0ooo1:4. The results
show that for low values of the spring offset angle, these terms should be included for low values of the mass ratio, or

the ratio of natural frequencies, at low incidences. For high values of the spring offset angle, corresponding to stall

flutter, the terms are important for large values of the mass ratio. They also show that the maximum differences are

obtained for y¼ 10�. This can be explained by the presence of cycles of flow separation and reattachment in the range

10� � y � 15� which are not present elsewhere.

Even though neglecting the added mass terms leads to large errors in the position of the flutter boundaries, sometimes

with values of the relative error of 50% or above, the magnitude of these errors is not as large as that observed when

comparing two different models. This seems to indicate that errors originated within a dynamic stall model due to the

neglect of the added terms are often smaller than those associated with its modelling uncertainties.

This investigation has intentionally avoided the parameter settings which would result in a bifurcation close to the

discontinuity. The value of the parameter a1 is taken to be a constant so that the discontinuity can be explicitly defined,

otherwise the discontinuity will be a function of the flow conditions. This makes the analysis of the dynamics very

difficult, but also very interesting because the bifurcations which might occur in the neighbourhood of the discontinuity

could be discontinuous.
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Appendix A. The system of ODEs describing the aeroelastic system

The purpose of this appendix is to present the governing equations of the aeroelastic model relevant to the calculation

of flutter boundaries used here to assess the effect of the added mass terms. The system of ODEs that represents the full

aeroelastic system corresponding to Eq. (15) is written here as

x0 ¼ fðx;x0Þ;

where the subindex f has been dropped for notational convenience.

Recall that the first twelve components of x represent the aerodynamic states in the LB model and the other

four correspond to the pitch and plunge structural degrees of freedom and their derivatives, i.e. ½x13; x14; x15; x16� ¼

½y; y0; x; x0�. The right-hand side of the system of 16 ODEs at a fixed point is given by f=[f1,f2,y,f16]
T and its various

components are described in the following.

A full description of our interpretation of the LB model, as well as a physical or mathematical interpretation of the

variables involved and their relationships in the state-space version of the LB model, is described by

Chantharasenawong (2007) and Galvanetto et al. (2008). We refer the reader to these references for any queries

about the model not covered by this article. Alternatively, the interested reader could also consult the original papers by

Leishman and Beddoes, namely Beddoes (1976, 1983, 1984), Leishman and Beddoes (1986, 1989), Leishman and

Nguyen (1988), Crouse and Leishman (1992), that we have used to construct our version of the LB model.

The first nine components of f correspond to the linear aerodynamic terms and are written as

f1 ¼
c

2V

� �
a11x1 þ aþ

1

2
q

� �
; f2 ¼

c

2V

� �
a22x2 þ aþ

1

2
q

� �
;

f3 ¼
c

2V

� �
ða33x3 þ aÞ; f4 ¼

c

2V

� �
ða44x4 þ qÞ;

f5 ¼
c

2V

� �
ða55x5 þ aÞ; f6 ¼

c

2V

� �
ða66x6 þ aÞ;
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f7 ¼
c

2V

� �
ða77x7 þ qÞ; f8 ¼

c

2V

� �
ða88x8 þ qÞ;

f9 ¼
1

TP

ðc11x1 þ c12x2 þ c13x3 þ c14x4Þ þ
4

M
aþ

1

M
q�x9


 �
;

where the effective angle of attack a and nondimensional pitch rate of the full system q are given by

a¼ tan�1
U

L

� �
¼ aðx13;x14;x16Þ; q¼ 2

LU 0�UL0

U2 þ L2
¼ qðx13;x14;x16;x14

0 ;x16
0 Þ;

with

U ¼ sinðx13Þ þ x16cosðx13Þ þ x14r; L¼ cosðx13Þ�x16sinðx13Þ;

U 0 ¼ x14cosðx13Þ�x14x16sinðx13Þ þ x16
0 cosðx13Þ þ x14

0 r; L0 ¼ �x14sinðx13Þ�x14x16cosðx13Þ�x16
0 sinðx13Þ:

The coefficients for the linear aerodynamic terms are

a11 ¼�
2V

c
b1b

2; a22 ¼�
2V

c
b2b

2; a33 ¼�
1

KaTI

; a44 ¼�
1

KqTI

;

a55 ¼�
1

b3KaMTI

; a66 ¼�
1

b4KaM TI

; a77 ¼�
2V

c
b5b

2; a88 ¼�
1

KqM TI

and

c11 ¼CS
Na

2V

c
b2A1b1; c12 ¼CS

Na
2V

c
b2A2b2; c13 ¼

4

M

�1

KaTI

� �
;

c14 ¼
1

M

�1

KqTI

� �
; c21 ¼ c11ð0:25�xacÞ; c22 ¼ c12ð0:25�xacÞ;

c25 ¼
�1

M

�A3

b3KaMTI

� �
; c26 ¼

�1

M

�A4

b4KaMTI

� �
; c27 ¼�

CS
Na

16
b5b2

2V

c

� �
;

c28 ¼
�7

12M

�1

KqMTI

� �
;

where xac is the nondimensional position of the aerofoil aerodynamic centre. The time constants used in the expressions

above are given by

Kq ¼
0:75

ð1�MÞ þ 2pb2M2ðA1b1 þ A2b2Þ
;

KaM ¼
A3b4 þ A4b3

b3b4ð1�MÞ
; KqM ¼

7

15ð1�MÞ þ 3pbM2b5
;

where b2 ¼ 1�M2 and the values of the coefficients are taken to be

A1 ¼ 0:30; b1 ¼ 0:14; A2 ¼ 0:70¼ 1�A1; b2 ¼ 0:53;

A3 ¼ 1:5; b3 ¼ 0:25; A4 ¼�0:5¼ 1�A3; b4 ¼ 0:1; A5 ¼ 1:0; b5 ¼ 0:5:
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The next three components of f represent the nonlinear aerodynamic terms and are expressed as

f10 ¼

1

Tf 0
1�0:30exp

x9

CNa

����
�����a1

S1

0
BB@

1
CCA�x10

0
BB@

1
CCA if

x9

CNa

����
���� � a1;

1

Tf 0
0:04þ 0:66exp

a1�
x9

CNa

����
����

S2

0
BB@

1
CCA�x10

0
BB@

1
CCA if

x9

CNa

����
����4a1;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

f11 ¼�
x11

Tv0
;

f12 ¼

1

F1Tf 0
1�0:30exp

jx13j�a1
S1

� �
�x12

� �
if jx13j � a1;

1

F1Tf 0
0:04þ 0:66exp

a1�jx13j

S2

� �
�x12

� �
if jx13j4a1

8>>><
>>>:

with F1=0.63.

Finally, the structural terms are given by

f13 ¼ x14;

f14 ¼
1

b0

1

ðU�Þ2
ðx13�y0Þ þ

2zy
U�

x14�
xy

r2y

o
U�

� �2

x15�2zx
xy

r2y

o
U�

� �
x16�

xy

pmr2y
CL�

0:5þ ah

pmr2y
CN�

2

pmr2y
CM

" #
;

f15 ¼ x16;

f16 ¼
1

b0
�

xy

ðU�Þ2
x13�

2zyxy

U�
x14 þ

o
U�

� �2

x15 þ 2zx
o

U�

� �
x16 þ

1

pm
CL þ

ð0:5þ ahÞxy

pmr2y
CN þ

2xy

pmr2y
CM

" #
;

with b0 ¼ ðxy=ryÞ
2
�1. Notice that here the aerodynamic coefficients used are CL and CN instead of the more classical CL

and CD used in Eqs. (1) and (2). Nevertheless, they are related through a simple change of variables, namely

CN ¼CLcosaþ CDsina.
The aerodynamic coefficients representing force and moment can be exclusively expressed in terms of the state

variables and are given by

CL ¼ CNa
2V

c

� �
b2ðA1b1x1 þ A2b2x2Þ

1þ
ffiffiffiffiffiffiffi
x10
p

2

� �2

þ
4

M
ðaþ a33x3Þ þ

1

M
ðqþ a44x4Þ þ x11

 !
cosðx13Þ

� ZCNa
2V

c
b2ðA1b1x1 þ A2b2x2Þ

� �2 ffiffiffiffiffiffiffi
x10
p

 !
sinðx13Þ;

CN ¼CNa
2V

c

� �
b2ðA1b1x1 þ A2b2x2Þ

1þ
ffiffiffiffiffiffiffi
x10
p

2

� �2

þ
4

M
ðaþ a33x3Þ þ

1

M
ðqþ a44x4Þ þ x11;

CM ¼CNa
2V

c
b2ðA1b1x1 þ A2b2x2Þ

ð1þ
ffiffiffî
x
p
Þ
2

4
ðK0 þ K1ð1�x̂Þ þ K2sinðpx̂2

ÞÞ

�
1

M
ðA3a55x5 þ A4a66x6 þ aÞ�

7

12M
�

1

KqM TI

x8 þ q

� �
�0:25 1�cos

ptv

Tvl

� �� �
x11;

where

x̂ ¼
x10 if x104x12;

x12 if x10 � x12:

(



Table 1

Parameters of the LB model for a NACA0012 aerofoil as functions of the free-stream Mach number.

Mach number 0.30 0.4 0.5 0.6 0.7 0.75 0.8

CS
Na 6.6211 7.0502 7.5100 8.2457 9.6864 10.9432 13.6407

a10 0.2529 0.2073 0.1741 0.1409 0.0929 0.0580 0.0116

da1 0.0367 0.0349 0.0253 0.0175 0.0140 0.0035 0.0017

S1 0.0262 0.0284 0.0305 0.0349 0.0393 0.0305 0.0061

S2 0.0201 0.0140 0.0105 0.0061 0.0044 0.0070 0.0016

K0 0.0125 0.0300 0.1000 0.1900 0.1500 0.0050 �0.0500

K1 �0.108 �0.108 �0.100 �0.096 �0.072 �0.104 0.016

K2 0.04 0.05 0.04 0.04 0.15 �0.02 �0.01

Df 8.0 7.75 6.2 6.0 5.9 5.5 4.0

Tf 0 3.0 2.5 2.2 2.0 2.0 2.0 2.0

TP 1.7 1.8 2.0 2.5 3.0 3.3 4.3

Tv 0 6.0 6.0 6.0 6.0 6.0 6.0 4.0

Tvl 5.25 6.75 6.75 6.75 6.75 6.75 6.75
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The other parameters of the LB model for the NACA0012 aerofoil are functions of the Mach number M and are

given in Table 1.

The entries of the 16� 16 Jacobian matrix @f=@x required for the flutter calculations presented here can be easily

obtained from the above equations or consulted in Chantharasenawong (2007).
References

Beddoes, T., 1976. A synthesis of unsteady aerodynamic effects including stall hysteresis. Vertica 1, 113–123.

Beddoes, T., 1983. Representation of airfoil behaviour. Vertica 7 (2), 183–197.

Beddoes, T., 1984. Practical computation of unsteady lift. Vertica 8 (1), 55–71.

Beedy, J., Barakos, G., Badcock, K., Richards, B., 2003. Non-linear analysis of stall flutter based on the ONERA aerodynamic model.

Aeronautical Journal, 495–509.

Blevins, R.D., 2001. Flow-induced Vibration, second ed. Krieger Pub. Co., Malabar, Florida.

Chantharasenawong, C., 2007. Nonlinear aeroelastic behaviour of aerofoils under dynamic stall. Ph.D. Thesis, Department of

Aeronautics, Imperial College London.

Crouse, G.J., Leishman, J., 1992. Transonic aeroelasticity analysis using state-space unsteady aerodynamic modeling. Journal of

Aircraft 29 (1), 153–160.

Dat, R., Tran, C., 1983. Investigation of the stall flutter of an airfoil with a semi-empirical model of 2-D flow. Vertica 7 (2), 73–86.

Fung, Y.C., 1993. An Introduction to the Theory of Aeroelasticity. Dover, New York.
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